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Abstract
Electrical vehicle technology is sharply rising and expected to dominate the inter-
national market in the coming 10 years. In electric vehicles, axial cooling fans are
commonly used to cool batteries with high heating load. One drawback of axial
cooling fans is the high aeroacoustic noise level resulting from the fan blades and
the obstacles facing the air flow. To create a comfortable cabin environment in the
vehicle, a low-noise installation design of the axial fan is required. The purpose
of the current project is to develop an efficient computational aeroacoustics (CAA)
simulation process to assist the cooling-fan installation design.
The current thesis focuses on a hybrid CAA approach where the aerodynamic
field is obtained through the unsteady Reynolds-averaged Navier-Stokes equations
(URANS) model, and the acoustic field is computed via Lighthill’s analogy. The
simulation process is applied to a benchmark case in the literature, where the aerody-
namics and aeroacoustics of a low-speed axial fan are investigated separately. Initial
steady state simulation is performed using the moving reference frame (MRF) ap-
proach to quantify different simulation model parameters before running the main
URANS simulation. The URANS model provides good prediction of the mean flow
quantities. The computed unsteady wall pressure fluctuations succeeds to resolve
the fan blade passing frequency and the sub-harmonic frequency resulted from the
interaction of the gap flow with the fan blades.
The CAA approach studied in this thesis is limited to the prediction of narrow-band
components of the fan noise, i.e., the blade-passing-frequency (BPF) noise and the
noise generated by distinct coherent vortex structures. The aeroacoustic simulation
model successfully captures the narrow-band acoustic signal and gives promising
results for extending the approach to predict broad-band fan noise by replacing the
URANS model with more advanced CFD models, such as the large eddy simulation.

Keywords: Computational Fluid Dynamics (CFD), Aeroacoustics, Low-speed ax-
ial fan, Unsteady Reynold averaged Navier-Stokes equations (URANS), Lighthill’s
analogy, Sound propagation, Star-CCM+, Actran.
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1
Introduction

1.1 Background

Electric vehicles (EVs) are the future. An important problem of the existing cooling
systems for EVs is the significant noise emission while charging the batteries of
electric motors. The noise can propagate outside and introduce obvious pollution to
the neighborhood. Besides, the creation of comfortable cabin environments is always
concerned in the automotive industry to boost the competitive power of productions.
There is therefore an demand to develop quiet and efficient cooling systems. To
reduce product development cost and time, building an robust numerical tool for
the fan-noise prediction is beneficial.
Several numerical approaches for fan-noise prediction can be found in literature. For
example, the Ffowcs Williams-Hawkings equation is used by Khelladi et al. [3] to
predict dipole and monopole tonal noises from a high rotational speed centrifugal fan;
the variational form of the Lighthill’s analogy is used by Rynell et al. [4] to study
both the narrow-band and broadband noise of an axial cooling fan; the acoustic
perturbation equations are used by Kaltenbacher et al. [5], Junger et al. [6] to study
the aeroacoustic properties of an axial fan. The choice of the numerical method
depends on many factors, such as the requirement of simulation accuracy and time,
the availability of software, etc.

1.2 Purpose

The purpose of this thesis is to set up computational fluid dynamics (CFD) and
computational aeroacoustic (CAA) model to simulate the flow and sound field of
an axial fan. Simulation results would be validated by the experimentally measured
data provided by Zenger [2] as a benchmark case.

1.3 Limitations

This project is limited in time to 20 weeks for one MSc student. Computer resources
including software and hardware are limited to those available at Volvo Cars Coop-
eration (VCC).
Due to the use of URANS, the current study can only predict narrow-band noise.
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1. Introduction

1.4 Methodology
In this section, project workflow of the simulation setup is described. Initially, a
CAD file is supplied by Zenger et al. [2] for the benchmark case investigated, then
imported to the pre-processing software ANSA for further simplification and com-
putational domain creation. The simplified pre-processed surface mesh produced
in ANSA is imported to the main CFD software Star-CCM+ to generate the vol-
ume mesh and set up the physics-model definitions, including material properties,
flow and energy coupling, turbulence model and solver parameters. Boundary condi-
tions are then defined for the computational domain before volume mesh generation.
Steady and unsteady simulations are performed to evaluate different parameters and
models to reach to the best simulation model. Acoustic mesh is then prepared using
ANSA and exported to the acoustic software Actran where the CFD computations
exported from Star-CCM+ are mapped to the acoustic mesh and the sound field
is solved through the Lighthill’s analogy. Finally, the acoustic results are post-
processed and evaluated.

Geometry preparation,

Computational domain definition &

Surface mesh generation in ANSA

Volume mesh generation

in Star-CCM+

CFD simulation setup in Star-CCM+
Set physics model, boundary conditions

and solver settings

Verify flow field

results

Import CFD computations source

to Actran and apply Lighthill’s

analogy

CAA simulation setup in Actran
Set acoustic volume mesh

and boundary conditions

Post-process and verify

acoustic results

No

Yes

Start

End

Figure 1.1: Schematic overview of the project workflow.
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2
Theory

This chapter gives brief theoretical aspects involved in this thesis. First, a de-
scription of the governing equations of the fluid mechanics is given, followed by a
summary of the turbulence modeling. Then, the CFD techniques used in this study
are introduced, and the approach used to model the rotating behavior of the fan
rotor is described. Finally, the Lighthill’s analogy used to model the noise genera-
tion by the fan is described, and the relation between the Curle’s analgy and the
variational formulation of the Lighthill’s analogy that is used in Actran is discussed.

2.1 Governing equations
To simulate any fluid flow, the physical properties of the fluid (density, velocity,
etc..) need to be mathematically modeled. Depending on the scale of interest, one
can model fluid flow differently. At microscopic level, fluid can be compromised as
a group of individual molecules with non-uniform physical properties. However, the
phenomena studied in fluid dynamics are generally macroscopic where the physi-
cal properties are assigned to different fluid grid elements containing a number of
molecules. Compressible flow can be macroscopically modeled by the three con-
tinuum equations of conservation, i.e., the conservation of mass, conservation of
momentum, and conservation of energy.
The conservation of mass leads to the continuity equation which describes the mass
transport over a finite fluid element:

∂ρ

∂t
+ ∂ρui

∂xi
= Qm, (2.1)

where Qm is introduced as a mass source term in the equation.
The momentum equation (the Navier-Stokes equation) is considered to be a state-
ment of Newton’s second law of motion which relates the sum of forces acting on a
fluid element to its rate of motion and reads [7]

∂ρui
∂t

+ ∂ρujui
∂xj

= − ∂p

∂xi
+ ∂τij
∂xj

+ fi, (2.2)

where fi describes the external body forces and τij is the viscous stress tensor which,
for Newtonian fluid, is defined as:

τij = µ
(∂ui
∂xj

+ ∂uj
∂xi

)
− (2

3µ
∂uk
∂xk

δij), (2.3)

3



2. Theory

where δij is the Kronecker delta which has the value of 1 if i = j and 0 if i 6= j.
The conservation equation of energy is a mathematical description of the first law of
thermodynamics, which states that the rate of change of energy inside a fluid element
is equal to the rate of energy received by heat and work to that fluid element. The
equation is written as

∂ρe

∂t
+ ∂ρuie

∂xi
= −p∂ui

∂xi
+ τij

∂ui
∂xj

+ ∂

∂xj

(
κ
∂T

∂xj

)
+ SE, (2.4)

where e is the internal energy and κ= κ(T) is the thermal conductivity and SE is
the energy source term.
For air at ambient conditions, the behavior of the gas is well approximated by the
ideal gas law, which relates the pressure, density and temperature as follows,

p = ρRT, (2.5)

where R is the specific gas constant. Under such law, the internal energy e can be
represented by the temperature T via

de = CvdT, (2.6)

where Cv is the specific heat capacity at constant volume.
Now the number of unknowns is equal to the number of equations, and the set of
equations can be solved for a specific computational domain with proper initial and
boundary conditions. For turbulent flow, solving the equations directly using di-
rect numerical simulation (DNS) approach is usually computationally demanding.
Therefore, different turbulence models have been developed to reduce the compu-
tational cost. The turbulence models used in this study is introduced in the next
section.

2.2 Turbulent flow
According to Hinze[8] turbulence can be characterized as:

Turbulent fluid motion is an irregular condition of flow in which the various quan-
tities show random variation with time and space coordinates, so the statistically
distinct average values can be discerned

Turbulent flow is encountered in most engineering applications. Several models
were introduced to model the flow in a less computational way. Depending on the
level of information being interested in, different modeling approaches should be
chosen. In this section, the turbulence modeling chosen in this study is described.
The model is based on the Reynolds decomposition, i.e., the flow quantities are
decomposed into their mean and fluctuating values as follows

ui = 〈Ui〉+ u′i, (2.7)
p = 〈P 〉+ p′, (2.8)

4



2. Theory

where the mean values are defined as,

〈φ〉 = 1
τ

∫ t+τ

t
φ(x, t)dt. (2.9)

Applying the Reynolds decomposition to the incompressible version of the conserva-
tion equations yields the following time-averaged continuity equation (Eq. (2.10)),
time-averaged Navier-Stokes equations which is commonly known as the unsteady
Reynolds-averaged Navier-Stokes equations (Eq. (2.11)) (URANS) and the time-
averaged energy equation (Eq. (2.12)) (with all the source terms neglected):

∂〈Ui〉
∂xi

= 0, (2.10)

∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

= −1
ρ

∂〈P 〉
∂xi

+ ν
∂2〈Ui〉
∂xj∂xj

−
∂〈u′iu′j〉
∂xj︸ ︷︷ ︸
(i)

, (2.11)

∂〈e〉
∂t

+ 〈Ui〉
∂〈e〉
∂xi

= −1
ρ

∂〈P 〉〈Ui〉
∂xi

+

〈
τij
〉

ρ

∂
〈
ui
〉

∂xj
+ 1
ρ

∂

∂xi

(
κ
∂〈T 〉
∂xj

)
− ∂〈u′ie′〉

∂xi︸ ︷︷ ︸
(ii)

.
(2.12)

In the above equations, there are two terms, (i) and (ii), which involve the average of
the nonlinear turbulent fluctuations. The first term 〈u′iu′j〉 is known as the Reynolds
stress tensor and appears as additional fictitious stresses that interact and affect the
mean flow [7]. The second term 〈u′ie′〉 is analogous in its definition to the Reynolds
stress tensor but instead describes the turbulent heat flux vector. These two newly
introduced terms should be further modeled in order to close the equation system.
Because the internal energy is not interested in this study, and because the energy
equation Eq. (2.12) is decoupled from the other conservation equations due to the
assumption of incompressible flow, only Eq. (2.10) and Eq. (2.11) need to be solved
in this study and hence only the modeling of (i) is introduced in the next section.

2.2.1 Turbulence modeling
Turbulence modeling is a way to relate the unclosed fluctuating terms to the depen-
dent variable. One commonly used turbulence model is the so-called “eddy-viscosity
model”, which implements the Boussinesq approximation by relating the Reynolds
stresses to the shear strain rate via the eddy viscosity νt [7]

〈u′iu′j〉 = −νt
(∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
+ 2

3kδij, (2.13)

where k is the turbulent kinetic energy per unit mass and defined as k = 1
2〈u
′
iu
′
i〉.

There exists many methods for the determination of the eddy viscosity νt. These
methods are classified by the number of transport equations added in addition to the

5



2. Theory

Reynolds averaged equations to determine the local eddy viscosity. In this section,
only the classification of two-equation models is discussed.
In the two-equation models, the eddy viscosity can be described in term of the
turbulent kinetic energy and another turbulent quantity. Two of the mostly used
two-equation models, the realizable k − ε model and the SST k − ω model, are
summarized here.

2.2.1.1 The realizable k − ε model

In this model, the turbulent quantity that is used to describe the eddy viscosity is
the turbulent energy dissipation rate ε, defined by

ε = k
3
2

l
. (2.14)

where l is the characteristic length scale of the local turbulent eddies, and Cν is a
proportionality constant. The eddy viscosity then reads,

νt = Cµ
k2

ε
, (2.15)

The exact transport equations for ε and k are illustrated by Launder and Spalding[9]
and written as

∂k

∂t
+ 〈Ui〉

∂k

∂xi
= ∂

∂xi

[(
ν + νt

σk

) ∂k
∂xi

]
+ νt

[(
∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
∂〈Ui〉
∂xj

]
− ε. (2.16)

∂ε

∂t
+ ∂〈Ui〉ε

∂xi
= ∂

∂xi

[(
ν + νt

σε

) ∂ε
∂xi

]
+ ε

k
Cε1νt

[(
∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
∂〈Ui〉
∂xj

]
︸ ︷︷ ︸

(i)

−Cε2
ε2

k︸ ︷︷ ︸
(ii)

.

(2.17)

Cµ, σk, σε, Cε1 and Cε2 are five closure coefficients derived empirically. These closure
coefficients are assumed to be universal, however they can be different from one flow
to another.
The realizable k-εmodel implies a constraint on the predicted Reynolds stress tensor
to ensure that the normal stress value can never have a negative value by expressing
the closure coefficient Cµ as function of of mean flow and turbulence properties [10].
Furthermore, realizable k-ε involves a modification in the production term (i) of
turbulent dissipation energy rate equation which makes it more capable to predict
the spreading rate for axisymmetric jets as well as for planar jets, making this
model more suitable for flows with large strain rate like flows with strong streamline
curvature and rotation [7].

6



2. Theory

2.2.1.2 The SST k − ω model

Another way to quantify the turbulent length scale is to use the specific turbulent
energy dissipation rate ω ∝ ε/k, which leads to the standard k − ω model. One
of the advantages of this model over the k − ε model is that the k − ω model can
perform in regions with low turbulence when k and ε approach zero (e.g., near the
wall). This cause a problem since k and ε must approach zero at a correct rate as
the dissipation term (ii) in Eq. (2.17) includes ε2/k [7].

The modeled k equation is written as,

∂k

∂t
+ 〈Ui〉

∂k

∂xi
= ∂

∂xi

[(
ν + νt

σk

) ∂k
∂xi

]
+ νt

[(
∂〈Ui〉
∂xj

+ ∂〈Uj〉
∂xi

)
∂〈Ui〉
∂xj

]
− βkω, (2.18)

and the modeled w equation is

∂ω

∂t
+〈Ui〉

∂ω

∂xi
= ∂

∂xi

[(
ν+ νt

σω

) ∂ω
∂xi

]
+ω

k
Cω1νt

(
∂〈Ui〉
∂xj

+∂〈Uj〉
∂xi

)
∂〈Ui〉
∂xj

−Cω2ω
2, (2.19)

and turbulent viscosity can be calculated from

νt = k

ω
. (2.20)

Similar to k − ε model, the values β, Cω1, Cω2, σk and σω are empirical model
constants. For boundary layers with adverse pressure gradient, k − ω model is
claimed to have better prediction to the flow. For further information about k − ω
model, the reader is referred to [11].
The Shear Stress Transport (SST) model combines both k− ε and k−ω by using a
blending function as suggested by Menter [12]. This blending function applies k−ω
model at the near-wall region and k−ε at the free stream. This model is extensively
used in complex turbulent flows like swirling jets and streamline curvatures.

2.2.2 Boundary layer
At a solid wall of any fluid flow, the relative velocity between the fluid and wall
is zero due to the wall friction. This leads to a near-wall region where the fluid
velocity increases rapidly from zero to the mean fluid velocity. This region is called
the boundary layer. To capture the rapid variation of the flow variables in this
region, one either applies a fine computational grid near the wall to fully resolve the
flow in the region, or uses empirical wall functions to obtain the turbulent quantities
at the first grid point far from the wall.
For a turbulent flow, boundary layer can be divided into an outer region where the
velocity of the fluid is equal to the mean flow velocity and to an inner region where
the velocity of fluid increases rapidly from zero to the mean flow velocity. The inner
region is divided into sub-layers based on the magnitude of the turbulent and viscous
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parts of the total shear stress, τxy ,

τxy = µ
(∂〈Ux〉

∂y
+ ∂〈Uy〉

∂x

)
− ρ〈u′xu′y〉. (2.21)

Near the wall, at the viscous sub-layer, the viscous stress is dominant and molecules
viscosity plays a dominant role in momentum transfer and the effective turbulence
perpendicular to the wall is almost equal to zero. Further away from the wall, viscous
and turbulent stresses are equally effective in momentum transfer. This region can
be considered to be a transition region for the flow from laminar flow to turbulent
flow and known as buffer sub-layer. At a larger distance from the wall, the turbulent
stresses become dominant and viscous effects are negligible. Sub-layers positions are
shown in Fig. 2.1.

y

velocity

viscous sub-layer

buffer sub-layer

fully turbulent sub-layer

Figure 2.1: Sub-layers at inner region.

The physical extent of these sub-layers are commonly expressed by non-dimensional
wall distance y+ which is defined in terms of wall variables as

y+ = y/l∗ = yu∗/ν, (2.22)

where y is the normal distance away from the wall and l∗ is the flow characteristic
wall length and u∗ is the wall friction velocity and defined as

u∗ =
√
τw/ρ, (2.23)

where τw is the viscous shear stress at the wall

τw = ρν
∂〈Ux〉
∂y

∣∣∣∣∣
y=0

. (2.24)

Inner region sub-layers are experimentally classified in terms of y+ as the following [7]

i. Viscous sub-layer 0<y+<5
ii. Buffer sub-layer 5<y+<30
iii. Fully-turbulent sub-layer 30<y+<400

As discussed before, the velocity gradient at the inner region is relatively high com-
pared to the mean flow gradient. In order to capture this large change in flow
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properties near the wall, high mesh resolution is required for solving the governing
equations accurately. This approach is commonly known as low Reynolds number
approach where no modeling beyond the assumption of laminar flow is necessary in
the wall cells. This method corresponds to wall treatment method at Star-CCM+
named as low y+ wall formulation. As a consequence of using a very dense mesh
near the wall, this method could be highly demanding in terms of computational
resources and time. Hence, another approach could be followed where a wall func-
tion is used to bridge the near-wall region. This method is commonly known as
high Reynolds number approach or wall function and corresponds to wall treat-
ment method at Star-CCM+ named as high y+ wall formulation. Wall functions
are semi-empirical rules used to avoid having dense mesh near the wall region and
also may be needed since some particular turbulence models like standard k− ε are
not valid in the viscosity-affected near-wall region. The basic idea of wall function
is to apply boundary conditions at a point some distance away from the wall where
the turbulence models are not solved at this distance. Wall function is commonly
applied at the inner region boundary layer which means that the first cell near the
wall should have a perpendicular distance that achieves y+ > 400, while for using
low y+ wall formulation the first cell should have a very small perpendicular distance
that achieve y+ ≈ 1. Star-CCM+ provides an additional wall treatment formulation
called Two-layer all y+ wall formulation [10] that uses a blending function in terms
of the wall-distance to use both low and high wall treatments.

2.3 Numerical methods for CFD
This section briefly discusses the common numerical methods used to mathemati-
cally solve the flow governing equations in CFD simulations.
It is not generally possible to solve flow transport equations analytically since they
are non-linear equations and contain both spatial and temporal derivatives. For
simplification, general transport equation for arbitrary variable φ in conservation
form is introduced as the following:

ρ
∂φ

∂t︸ ︷︷ ︸
(i)

+ ρ
∂(ujφ)
∂xj︸ ︷︷ ︸
(ii)

= ∂

∂xj

(
Γ ∂φ

∂xj

)
︸ ︷︷ ︸

(iii)

+Sφ, (2.25)

where Γ is the diffusion coefficient and Sφ is a source term that depends on the
variable φ. Terms (i), (ii) and (iii) are known as transient, convection and diffusion
terms respectively.

2.3.1 Finite volume method
Finite volume method divides the computational domain into a finite number of
small cells and by integrating the transport equations over a control volume (cell)
and by applying Guass’ theorem, the partial differential equations (PDE) can be

9



2. Theory

re-written as algebraic equations and solved numerically in an easier way. The in-
formation about the flow is solved and stored at the center of the cell. The cost of
discretizing the computational domain into small volume cells is the introduction of
error in the solution [7].

If finite volume method and Gauss’ theorem is to be applied on the convection term
in the general transport equation (2.25) it gives the following∫

c.v

∂ρujφ

∂xj
dV =

∫
c.s
ρujnjφdA, (2.26)

where n refers to a normal vector pointing outwards from the surface of the cell dA.
For a structured 3D mesh, Eq. (2.26) can be written as

− ρ
[
(Auxφ)w − (Auxφ)e + (Auyφ)s − (Auyφ)n + (Auzφ)t − (Auzφ)b], (2.27)

where indices w,e,s,n,t, and b refer to west, east, south, north, top and bottom faces
of the control volume respectively. For simplification, Eq. (2.27) can be represented
as 1D control volume in the direction of x-axis, which means that integration from
the west to east faces is only accounted for. The next step is to estimate the value
of φ at the faces. This can be done by using several methods which each have their
own advantages and disadvantages based on the nature of the flow. In this problem,
central-differencing discretization scheme is followed using linear interpolation from
the values in the neighboring cells. Based on Fig. 2.2 value at the cell faces are
obtained as the following.

φw = φW + φP
2 , (2.28)

φe = φP + φE
2 . (2.29)

PW E

w e

WW EE

ww ee

Figure 2.2: One dimensional domain describing neighboring cells and cell faces.

As mentioned earlier, flow information is solved and stored at the center of the cell.
By neglecting transient, source, and diffusion terms in general transport equation,
Eq. (2.25) can be written as

ρux
[
(φP + φE

2 )− (φW + φP
2 )

]
= 0. (2.30)

N number of equation is solved for N number of cells with three unknown variables;
φW , φE and φP for each equation. However, the value of φE in the equation of cell
number 3 is the value of φP in the equation of cell number 4, concluding that the
total number of the unknown variables is N plus two additional variables for the
furthest eastern and western faces.

10
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In order to solve these equations, two imaginary cells can be added outside of the
computational domain to estimate the values of faces at the boundaries of the com-
putational domain.

2.3.2 Spatial discretization schemes
As discussed in the previous section, central-differencing scheme is used to estimate
and evaluate the value of flow variables at the faces of the cell. This method simply
takes the linear average of the adjacent cells disregarding the effect of flow direction
and magnitude. Upwind schemes are usually used in applications with high flow
rate where the convection transport become more dominant to avoid the solution
from diverging [7].

2.3.2.1 First-order upwind

Upwind schemes add to the discretization process a very important property which
is called transportiveness [7] where the numerical scheme takes the flow direction into
account by increasing the effect of the upstream cells of the flow in the computational
domain. This is done by letting the value of the phase between two cells equal to
the nearest upstream cell as the following;

φw = φW ,

φe = φP .
(2.31)

2.3.2.2 Second-order upwind

To increase discretization scheme accuracy and avoid numerical diffusion [7], second-
order upwind takes information from two upstream cells instead of one by assuming
that the gradient between eastern and present cell is equal to the gradient between
present and west cell, which gives for equidistant grid the following expression.

φw = 1.5φW − 0.5φWW . (2.32)

The main drawback of this method is that it is unbounded, which means that the
value of the estimated phase does not necessarily lay between the values used to
calculate it. This could cause several numerical instabilities and lead to divergence of
the solution. Several developments to second-order schemes are applied to overcome
this problem.

2.3.3 Temporal discretization scheme
For time-dependant problems, the transient term in Eq. (2.25) can no longer be
ignored and the whole transport equation is integrated in time from an initial time
value (t) to (t+ ∆t). Similar to the spatial discretization, different schemes can be
applied to evaluate the temporal gradient of certain entity φ.
Variables are calculated between time t and ∆t. Different discretization schemes are
categorized depending on the time boundary used to evaluate the result. The first is
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called explicit discretization scheme, where the value of φ at the previous time step is
used explicitly to calculate the new value of φ. This method requires great attention
when picking the value of the time step as it should be small enough to capture
the change of the variables within the required spatial frame which can make it
computationally expensive. The second method is called fully implicit discretization
scheme. This method does not use the value in the previous time step but instead
uses the value at the later time step which makes it unconditionally bounded. Unlike
explicit scheme, this method requires inner sub-iterations within each time step as
the value of the variables is not explicitly known at later time step. The number
of sub-iteration should be enough to achieve convergence before moving to the next
time step.

2.3.4 Measuring convergence
There are many methods to judge whether the solution is converged or not. The most
common one is to compare the numerical solution from one iteration to another and
set a small threshold for convergence. Another way is to check the global convergence
of the whole domain by monitoring a certain entity at the inlet and the outlet of
the computational domain, in the absence of any source of this entity, the difference
between these two values should be fairly small to achieve convergence.

2.4 Fan modelling
In this project, the multiple reference approach is followed to model the fan. In
this approach the computational domain is divided into two zones, stationary and
rotating, with interface surfaces separating them. The rotational movement of the
fan rotor is commonly simulated in two different methods. The first method is
called moving reference frame (MRF). This method is used in this project to offer
an initial evaluation of the quality of the mesh and the accuracy of the turbulence
models. The second method is the sliding mesh approach, where the mesh in the
rotation zone is moving with the rotor. Compared to the MRF, this method is more
computationally expensive but able to provide prediction of the unsteady flow field
of the rotating fan. Therefore the acoustic source in this study is constructed from
the unsteady flow variables obtained using the sliding mesh approach.

2.4.1 Moving reference frame
The MRF method is typically used to simulate rigid body rotation without the
need to move the mesh. Fig. 2.3 describes the coordinate transformation from
stationary frame to rotating frame. The rotating zone is solved in the rotating
frame and stationary zone solved in the stationary frame and both of the zones have
a stationary mesh. The main advantage of this approach is the ability to convert the
unsteady problem to a steady one and represent the time-averaged properties of the
flow, decreasing the computational demand significantly. The equations of motion
can be solved either in absolute velocity, u, or relative velocity, ur, formulation. The
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y

x

ω

Stationary

Rotating at speed ω

(a) Stationery reference frame.

y
′

x
′

−ω

Rotating at speed -ω

Stationary

(b) Moving reference frame.

Figure 2.3: Comparison between moving and stationery reference frames.

relation between both velocities can be written as

~ur = ~u− (~ω × ~r), (2.33)

where ~ω is the angular velocity of the rotating reference frame and ~r is the position
vector in the rotating frame. For solving equations of motion in rotating reference
frame, governing equations can be written in terms of relative velocity as

∂ρ

∂t
+ ∂ρ ~ur,i

∂xi
= Sm, (2.34)

∂ρ ~ur,i
∂t

+ ρ
∂ ~ur,i ~ur,j
∂xj

+ ρ(2~ω × ~ur,i + ~ω × ~ω × ~r) = − ∂p

∂xi
+ ∂τij
∂xj

+ ~fi. (2.35)

Two additional terms appear in Eq. (2.35) that represent Coriolis acceleration and
centripetal acceleration that arose from the transformation of coordinates from sta-
tionary frame to a rotating one. MRF is also known as frozen rotor approach as
it is analogous to freezing the motion of a moving part in a certain position and
monitoring the instantaneous flow field with the rotor in that position [13]. At the
interface between regions with different reference frames, local variables are trans-
formed from one frame to another on a cell-by-cell basis and then the transformed
variables are used to calculate the fluxes at the interface of the adjacent region [10]

2.5 Aeroacoustics
Aeroacoustics is a branch of fluid mechanics that deals with sound generated from
aerodynamics. Noise generated by flow is basically due to fluctuation in flow prop-
erties that can be created through different mechanics, such as turbulent motions,
fluctuations in external forces or heat sources.
The energy associated with the sound generated by flow is generally small compared
to the total energy of the flow, so it is difficult to predict the aeroacoustic noise by
directly solving the full fluid-mechanics equations. Many acoustic analogies therefore
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have been formulated to separate the “sound” from the main flow fluctuations.
This section gives a brief description of the general acoustic wave equation and the
acoustic analogy related to this project.

2.5.1 Acoustic wave equation
The perception of sound to the human ear is mainly through fluctuating pressure p̀
which is also known as acoustic pressure. In aeroacoustics, sound is generated from
the small fluctuations in flow variables that can be presented as perturbation from
reference state of density ρo, pressure po, and velocity uio,

p̀ = p− po, ρ̀ = ρ− ρo, ùi = ui − uio. (2.36)

The propagation of the small fluctuations can usually be described by certain lin-
earized fluid-mechanics equations, including the wave equation. The classic acoustic
wave equation is derived by assuming that the propagation of sound is an inviscid,
adiabatic and linear process. Under such an assumption, the propagation of “sound”
in quiescent fluid, uo=0, is described by the following equations of motions

∂ρ̀

∂t
+ ρo

∂ùi
∂xi

= Qm, (2.37)

ρo
∂ùi
∂t

+ ∂p

∂xi
= fi, (2.38)

p̀ = c2
oρ̀. (2.39)

Subtracting the divergence of Eq.(2.38) from the time derivative of Eq.(2.37) yields
the following non-homogeneous acoustic wave equation

1
c2
o

∂2p̀

∂t2
− ∂p̀

∂x2
i

= −∂fi
∂xi

+ ∂Qm

∂t
. (2.40)

The first and second term at the right-hand side of Eq.(2.40) represents sound
production from unsteady external force field and mass fluctuations, respectively
[14]. These two sources, however, are not the same as the aerodynamic sources as
in the Lighthill’s analogy that is introduced in the next section.

2.5.2 Lighthill’s analogy
The idea behind the Lighthill’s analogy is to connect acoustics and fluid mechanics
by formulating a non-homogeneous “wave equation” that models the acoustic source
through fluid governing equations. The main concept of the analogy is to decouple
the noise generation and propagation. In the analogy, the non-homogeneous “wave
equation” is derived by subtracting the divergence of the momentum equation (2.2)
with f = 0 from the time derivative of the continuity equation (2.1) with Qm = 0,
and subtracting the term c2

o∂
2ρ̀/∂x2

i from both sides. By using the definition of flow
perturbations in Eq. (2.36), the “wave equation” reads

∂2ρ̀

∂t2
− c2

o

∂2ρ̀

∂x2
i

= ∂2Tij
∂xixj

, (2.41)
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in which Lighthill’s stress tensor Tij is defined as

Tij = ρuiuj − τij + (p̀− c2
oρ̀)δij. (2.42)

The first term at the right-hand side of Eq. (2.42) is the Reynolds stress that accounts
for the nonlinear convection of momentum; the second term is the viscous stress
which is induced by molecular transport of momentum; the last term describes
complex effects due to convection of entropy non-uniformities [15].
In this project, the Lighthill’s analogy is solved with Actran [16] in the frequency
domain by adopting the variational formulation of the analogy derived by A Oberai
et al. [17]

−
∫

Ω

ω2

ρoc2ψδψ∂Ω−
∫

Ω

1
ρo

∂ψ

∂xi

∂δψ

∂xi
∂Ω =

∫
Ω

i
ρoω

∂δψ

∂xi

∂Tij
∂xj

∂Ω−
∫

Γ

δψ

ρo
F(ρuini)∂Γ,

(2.43)
where ψ = iρ̀c2

0/ω is the velocity potential, δψ is a test function (the variation),
Ω is the volumetric part of the computational domain, Γ is the boundary of the
computational domain, and F indicates the Fourier transform. The variable ω in
Eq. (2.43) denotes the angular frequency.
The first term at the right-hand side of Eq. (2.43) represents the contribution of the
volumetric aeroacoustic source, whereas the second term represents the contribution
of the surface source and described by Actran as Lighthill’s surface density. It should
be noted that, in the calculation of the volumetric source Actran approximates the
Lighthill’s stress tensor as [16]

Tij ≈ ρuiuj, (2.44)

which is valid for isentropic process and low-Mach-number flows [18].
One can compare the above variational formulation with the Curle’s analogy [19].
The differential form of the latter reads [20]

(
1
c2

0

∂2

∂t2
− ∂2

∂x2
i

)(
Hc2

0ρ̀
)

= ∂2 (HTij)
∂xi∂xj︸ ︷︷ ︸

Volumetric quadrupole

+ ∂

∂t

(
ρui

∂H

∂xi

)
︸ ︷︷ ︸
Surface monopole

− ∂

∂xi

[
(ρuiuj + p̀δij − τij)

∂H

∂xj

]
︸ ︷︷ ︸

Surface dipole

. (2.45)

where H is the Heaviside unit function defined by

H =

1, for x in Ω,
0, otherwise.

(2.46)

It can be shown that ∂H/∂xi is nonzero only at the surface of the computational
domain Γ. It is worth noting that the integral surface can be either rigid walls or
permeable surfaces located within the flow. In this study, a permeable surface is
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used as the integral surface. By using Eq. (2.42), Eq. (2.45) can be reformulated as

1
c2

0

∂2 (Hc2
0ρ̀)

∂t2
− ∂

∂xi

(
H
∂c2

0ρ̀

∂xi

)
= ∂2 (HTij)

∂xi∂xj
+ ∂

∂t

(
ρui

∂H

∂xi

)

− ∂

∂xi

{[
ρuiuj +

(
p̀− c2

0ρ̀
)
δij − τij

] ∂H
∂xj

}

= ∂

∂xi

(
H
∂Tij
∂xj

)
+ ∂

∂t

(
ρui

∂H

∂xi

)
. (2.47)

Then, the variational formulation Eq. (2.43) can be derived by multiplying the
Fourier transform of Eq. (2.47) by the variation and integrating over Ω. It can be
seen from the reformuated Curle’s analogy Eq. (2.45) and the variational formulation
Eq. (2.43), that the dipole source in the original Curle’s analogy is “merged” into the
modified quadrupole source. This indicates that the dipole contribution, which may
dominate over the quadrupole and monopole at low Mach numbers in the presence of
rigid surfaces, is accounted for by the variational formulation in the form of reflection
of quadrupole-generated sound at the boundaries.
In some cases, the local non-linear turbulent stress may be relatively weak and the
monopole may dominate over the quadrupole (such as the case treated in our study
where the acoustic domain positioned at the suction side of the fan experiences
relatively weak turbulent stresses). In such cases one may only keep the monopole
contribution in the variational formulation; this is then equivalent to the Kirchhoff-
Helmholtz formulation, the differential form of which reads [21](

1
c2

0

∂2

∂t2
− ∂2

∂x2
i

)(
Hc2

0ρ̀
)

= − ∂

∂xi

[
p̀
∂H

∂xi

]
+ ∂

∂t

(
ρui

∂H

∂xi

)
. (2.48)

Applying the variational formulation to Eq. (2.48), one can show that only the
“monopole”-related term ∂ (ρui∂H/∂xi) ∂t remains at the right-hand side of the fi-
nal equation. Because all the flow quantities involved in the Kirchhoff-Helmholtz
formulation must satisfy the wave equation, using only the contribution of the sur-
face source in Eq. (2.43) implicitly requires that the flow quantities on the source
surface (either permeable or impermeable) should be able to be treated as those
that satisfy the linear, inviscid and adiabatic flow equations.
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3
Simulation setup

3.1 CFD simulation

3.1.1 Geometry

The first step for setting up the CFD simulation is to have a simple geometrical
representation of the computational domain in the form of a computer-aided drawing
(CAD). The CAD file used in this project is supplied upon request by Zenger et al.
[2] and imported to the pre-processing software ANSA for further reprocessing. The
axial fan rotor consists of 9 blades that have a hub radius (rhub = 0.124m) and a tip
radius (rtip = 0.247m). The fan is installed in a short duct with a radius (rduct =
0.25m. It is necessary to clean the CAD file and prepare the geometry surface before
performing surface meshing. The cleaning process focused on removing unnecessary
parts that have no effect on the measured flow properties. Unwanted sharp edges
and holes are also removed to obtain more robust surface mesh and reduce the
number of computational cells as shown in Fig. 3.1 and Fig. 3.2.
For rotating turbomachinary applications, it is common to divide the computational
domain into rotating and stationary parts. The computational domain present at
hand is divided into three separate parts; inlet and outlet are the stationery parts
and the fan region in the middle is the rotating part. The rotating part is separated
from the other stationary parts by two conformal interface surfaces. Inlet and outlet
volume domains are defined in shape of two separate cuboids with cross section
similar to the inlet chamber of the measurement facility as seen in Fig. 3.3. The
next step is to define all of the available geometrical parts and apply high resolution
triangular surface mesh. This step is essential in order to find out and fix irregular
surfaces that could result to a bad volume mesh, especially around sharp edges and
high surface curvatures.

3.1.2 Volume meshing

After preparing the geometry and producing the surface mesh, the file is imported to
the main CFD analysis software Star-CCM+ as a surface mesh file in “.nas” format.
Star-CCM+ has several meshing models that are used in this project such as, surface
remesher, prism layer and the core volume mesher. Surface remehser improves the
overall quality of the surface and optimizes it for the volume mesher in addition to
supporting the subsurface generator when prism layer mesher is selected [10].
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(a) Original geometry. (b) Cleaned geometry.

Figure 3.1: Fan pressure side, before and after cleaning.

(a) Original geometry. (b) Cleaned geometry.

Figure 3.2: Fan suction side, before and after cleaning.

3.1.2.1 Prism layer

The prism layer mesher is used to improve the accuracy of resolving boundary flows
near the walls. As discussed in Sec. 2.2.2, there are two common approaches for
resolving boundary layer flow, choosing either of them depends on many other spec-
ifications such as, turbulence model selected, shape of the physical domain simulated
and the available computational resources. A small boundary layer test (Appendix
A) is executed to compare different y+ wall treatments for different turbulence mod-
els in STAR CCM+. For the realizable k−ε model, the study shows that the low y+
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Figure 3.3: CFD computational domain and the coordinate system followed

mesh in combination with all y+ wall treatment and the medium y+ mesh in com-
bination with high y+ wall treatment gave accurate boundary flow results, while for
using medium y+ mesh in combination with all y+ wall treatment, less accurate re-
sults are obtained. Since it is difficult to know all of y+ values in the computational
domain, low y+ mesh with all y+ wall treatment is chosen for the simulation. Prism
layer mesher produces orthogonal prismatic cells with high aspect ratio near the
surface walls to provide better cross-stream resolution without effecting the stream-
wise resolution [10]. Several factors are considered when setting up the prism layer
specifications to fully take advantage of the mesher tool and avoid high discretization
errors.

• Smooth cell size transition between prism layers region and the core volume
mesh region. The thickness of the first prism layer chosen to achieve y+ ≈ 1 is
0.0075 mm. To have a good transition along the prism layer region, 22 prism
layers are chosen with a total thickness of 0.008 m and stretching factor of 1.3

• Control prism layer total thickness when boundary surfaces are close to each
other as shown in Fig. 3.4(a)

• Set a specific aspect ratio between the thickness and the width of last prism
cell layer near the core volume mesh. This improves the transition from the
prism layer to the core mesh especially around sharp edges and curvatures as
seen in Fig. 3.4(b)

(a) Close boundary surfaces. (b) Near wall adjusted aspect ratio.

Figure 3.4: Prism layer specific properties.
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Fig. 3.5 shows y+ values at a rotor blade where the highest possible flow velocity
values are at the tip, trailing edge and leading edge of the blades and have y+≈ 1

Figure 3.5: y+ contour at rotor blades.

3.1.2.2 Core volume mesh

Polyhedral and trimmed volume mesh models are used for the steady and unsteady
simulations to compare their efficiency when it comes to accuracy, cell count, compu-
tational demand and the time needed to formulate the mesh and reach a converged
solution. Trimmed cell mesher main advantage is the short time required for build-
ing the mesh and the production of more structured cells compared to polyhedral
mesh as shown in Fig. 3.6. Although the trimmed model produces higher cell count,
the number of cell faces is much less than the polyhedral mesh which results in
faster iteration process for same computational resources. For steady simulation,
the two mesh models have taken nearly the same number of iterations to reach con-
vergence;however, results showed that polyhedral mesh gave more accurate results
as it is discussed in Sec. 4.2.2. Tab. 3.1 shows a comparison between the two mesh
models properties.

Mesh structure Polyhedral mesh Trimmed mesh
Cell count 20 M 24 M
No. of faces 92.5 M 70 M

No. of iterations for convergence 2800 2500

Table 3.1: Mesh models properties.

(a) Trimmed mesh. (b) Polyhedral mesh.

Figure 3.6: Mesh structure cross section.

20



3. Simulation setup

The mesh is refined at regions with high velocity gradients at trailing edges, leading
edges and tips of the rotor blades, in addition to the wake region after the rotor.
Prism layer mesher is not applied at the wall sides of the inlet and outlet regions,
since the velocity at this regions are very low and does not affect the flow study.

3.1.3 Boundary conditions

Before generating surface and volume meshes, boundary conditions are assigned to
different parts of the computational domain to represent the physical surroundings
of the experimental facility. The rectified flow at the inlet is represented by uniform
inlet velocity assigned to the far left face of the inlet region with value of 0.308
m/s which corresponds to the design volumetric flow rate 1.4 kg/m3. Rest of the
faces are treated as hard wall with no-slip boundary condition as well as the walls
between inlet and outlet regions and the whole rotor and fan frame geometry. For
the outlet region, the free outflow from the test chamber to the atmospheric ambient
is represented by assigning the surrounding faces to pressure outlet and setting it to
the atmospheric pressure value.
Moving reference frame is applied to the fan region in the steady simulation to
simulate the rotation effect of the rotor, while sliding mesh approach is applied in the
unsteady simulation to obtain more accurate results. The new reference is created
by setting axis of rotation coordinates and the rotating speed of the rotor. The whole
rotating region is assigned to the new reference frame except for the outer region
which represents the stationary duct. The rotating shaft that lies in the outlet region
is also assigned to the new reference frame. For sliding mesh approach, a rotation
motion for the mesh vertices is specified in the unsteady simulation by setting axis
of rotation coordinates and the rotation speed. The rotation motion property is
assigned to the same geometrical parts assigned in the steady simulation.

3.1.4 Physics

This section discusses the main physical models and mathematical formulations that
are used in the simulation to represent the flow.
Incompressible with constant density model flow is chosen, since the highest possible
flow velocity at the tip of the rotor blade had a Mach number of 0.123. Ambient
air properties are assigned for the medium flow with a density of 0.187 kg/m3 and
dynamic viscosity of 1.85×10−5 Pa.s.
Initially, The realizable k−ε and the k−ω (SST) turbulence models are used for the
steady simulation to evaluate model accuracy. The realizable k−ε with two-layer all
y+ treatment is used as the main turbulence model for further simulations based on
the results discussed in Sec. 4.2.2. Segregated flow solver is chosen for solving flow
variables including pressure and velocity, more information about the flow solvers
used in Star-CCM+ are discussed in Sec. 3.1.5. Tab. 3.2 shows the physics models
and settings used in steady and unsteady simulations.
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Space Three Dimensional
Time Steady / Implicit Unsteady

Material Gas
Flow solver Segregated flow

Equation of State Constant Density
Viscous Regime Turbulent
Turbulence model RANS (Realizable K-Epsilon Two-layer / SST K-Omega)
Wall treatment All y+ wall treatment

Table 3.2: Physics models.

3.1.5 Solver settings

3.1.5.1 Pressure-velocity coupling

In incompressible flow simulations, the four conservation equations (one conserva-
tion of mass and three conservation of momentum) consist of four unknown variables
(pressure and three velocity components), so the four equations could be directly
solved. In doing so, however, numerical issues (such as numerical instability) are
commonly encountered. Therefore, iterative process where the mass and momen-
tum equations are decoupled is usually adopted to solve the set of equations. The
iterative process starts by guessing initial value for the pressure field and then the
velocity components are solved through the momentum equations. Most probably
the velocities evaluated do not satisfy the continuity equation, so the pressure is
updated by pressure correction factor that depends on the mesh and the flow field.
The main idea behind the process is to find a good equation for the pressure correc-
tion as a function of mass imbalance. This iterative process is commonly known as
the SIMPLE algorithm.
The SIMPLE algorithm is used in this study.

3.1.5.2 Coupled and segregated flow solvers

Star-CCM+ uses coupled and segregated flow solvers to solve the conservation equa-
tions of mass and momentum. Coupled flow method solves all the flow variables si-
multaneously for a certain cell, then moves to the next one. Segregated flow method,
on the other hand, solves only one flow variable for all domain cells, then moves to
the next flow variable and solves again for all cells. The coupled flow solver is con-
sidered more accurate and robust for compressible flows, particularly in the presence
of shocks. Segregated flow solver is more convenient to be chosen if incompressible
flow is considered. In addition, segregated flow solver uses mush less memory than
the coupled flow solver.
Because of the incompressible-flow assumption adopted in our study, the segregated
flow solver is chosen here.
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3. Simulation setup

3.1.5.3 Discretization schemes and time step

Second order spatial discretization scheme is used in our steady and unsteady simu-
lation. Compared to the first order scheme, the second order scheme is expected to
offer more accurate results and help avoid numerical diffusion, as has been discussed
in Sec. 2.3.2.
For temporal discretization scheme in unsteady simulation, implicit unsteady scheme
is used where each time step consists of inner iterations. The number of inner
iterations can be set by monitoring one or more specific quantities against iterations
and determining if those quantities are converging within each time step or not.
Compared to the explicit method, the implicit discretization method is featured
by allowing the use of large time-steps. Even though, to avoid possible numerical
errors related to the rotation of the fan, the time step is chosen to be 1×10−4 which
corresponds to an angle of rotor rotation that is nearly less than 1°[22].

3.1.6 Measuring points

3.1.6.1 Velocity and wall pressure fluctuations

Following the measurement setup done by Zenger [2], 26 flow measuring points are
placed at both the pressure and the suction sides of the rotor to extract the axial
velocity profile along the rotor blade; see Fig. 3.7(a). In addition, 15 pressure probes
are placed along a line on the fan duct with an equal spacing of 10 mm to extract
the unsteady pressure fluctuations; see Fig. 3.7(b).

(a) Axial velocity probes. (b) Wall pressure probes.

Figure 3.7: Flow field measuring points.

3.2 Acoustic simulation
The acoustic field is computed with Actran using the finite element method. In
this section, the acoustic simulation setup is discussed, including the surface noise
source, the volume mesh, the boundary conditions, and the measuring points.
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3.2.1 Surface noise source
After establishing a robust CFD simulation model by verifying the numerical flow re-
sults against the experimental results, aeroacoustic source is imported to the acoustic
simulation software, Actran, to analyze the aerodynamically generated noise through
the Lighthill’s analogy. The Actran module, Lighthill surface, is applied to generate
surface sources.
As can been see from the Lighthill’s analogy, Eq. (2.43), the aeroacoustic source
consists of volumetric and surface contributions. In this study we only use the surface
contribution to compute the acoustic field because the volumetric contribution is
considered relatively weak at the suction side of the fan.
While choosing the surface source location, the initial plan is to extract the velocity
surface source at the interface between the inlet and the fan regions; however, it is
found that interface flow data extracted from Star-CCM+ are unreadable by Actran.
Therefore, the surface source is instead positioned a short distance towards the inlet
region on a surface created externally in ANSA; see Fig. 3.8

Figure 3.8: New surface source position highlighted in dark green.

Fig. 3.9 shows the difference between the velocity contours in both positions, notice-
able overlap between surface cells at the interface position which probably caused the
files to be unreadable. The surface source file is then processed in Actran through

Mean Velocity

10.03

8.36

6.69

5.02

3.34

1.67

0

(a) Source surface at the interface position.

Mean Velocity

10.03

8.34

6.67

5

3.33

1.67

0

(b) Source surface at the new position.

Figure 3.9: Velocity contour of different surface sources.

an inner utility called “iCFD”, which computes the aeroacoustic source through the
application of Lighthill’s analogy and then maps the extracted quantities to the
acoustic mesh and finally performs the Fourier transform to the data in order to
solve the acoustic equation in the frequency domain. The CFD-extracted quantities
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are mapped by integration of aeroacoustic fields over the CFD mesh using the shape
function of the acoustic mesh [16].

3.2.2 Volume mesh and boundary conditions
Compared to the CFD mesh, the acoustic volume mesh is applied to the inlet and ro-
tational regions, but not to the outlet region. This is because that the measurement
data to be compared are only available at the suction side, so, when the Lighthill’s
analogy is used, it is unnecessary to study the noise propagation at the pressure side
of the fan. The surface and volume mesh are generated by ANSA. The surface mesh
consists of nearly 71 thousand triangular cells with the smallest dimension size of 5
mm, while the volume mesh consists of nearly 2.3 million tetrahedral cells. Part of
of volume mesh at a cross section of the acoustic domain is shown in Fig. 3.10.

Figure 3.10: Mesh structure cross section.

Non-reflecting

Lighthill surface
Mic. 4

Mic. 3

Mic. 2
Mic. 1

Figure 3.11: Computational domain top view.

To mimic the non-reflecting radiation condition, infinite element boundary condition
is applied to the outer boundary of the acoustic domain. To improve the accuracy of
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3. Simulation setup

the infinite element condition, the shape of the inlet domain is changed from cuboid
to hemisphere; see Fig. 3.11. Infinite element method is well known to be useful
in boundary value problems defined in unbounded computational domains, more
information about infinite element method and its formulation can be found in [23].

3.2.3 Measuring points
Following the measurement setup, four probes are arranged on a shape of semicircle
with a radius of 1m centered around the inlet nozzle and at the same height of the
rotational axis. The probes are placed at the suction side of the fan as can be seen
in Fig. 3.11.
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4
Results & Discussion

The numerical results obtained from the CFD and the CAA simulations are pre-
sented in this chapter. The comparison between the numerical results and the
experimental data is also discussed.
The experimental results used as a benchmark case for this project are from the study
conducted by Zenger et al. [2]. The detailed measurement setup and the general
test chamber properties are described in [2]. The axial fan design parameters are
calculated using the blade element/ momentum method (BEMM). A short summary
of BEMM theory and our implementation of the method are presented in Appendix
B.

4.1 Steady state simulation

The main purpose of the steady simulation is to compare different models and
mesh structures using MRF approach, before going further to the main unsteady
simulation. Pressure rise across the fan and velocity profile along the rotor blade
are presented.

4.1.1 Pressure difference

Tab. 4.1 shows the pressure difference across the fan for different turbulence models
and mesh structures. The SST k−ω model with polyhedral mesh and the realizable
k − ε model with trimmed mesh show good estimations of the pressure difference
with a deviation of 0.31% and 0.79% from measurement value, respectively. On the
other hand, the realizable k − ε model with polyhedral mesh give a relatively far
estimation with a deviation of 7.8%.

Pressure difference (Pa)
Measurement 126.5

Realizable k − ε/Polyhedral mesh 116.6
Realizable k − ε/Trimmed mesh 125.5
SST k − ω/Polyhedral mesh 126.9

Table 4.1: Pressure difference for different steady simulation models.

27



4. Results & Discussion

4.1.2 Axial velocity
Both the realizable k− ε and the SST k− ω models overestimate the axial velocity
along the rotor blade on the suction side, except for a lower velocity prediction for
the realizable k − ε model at the blade tip. At the pressure side, the axial velocity
values for both models are in the same range as the measured ones except for a
noticeable overestimation before reaching the tip region for the SST k − ω model.
This poor prediction of the axial velocity profile is probably because of the the small
volume size of the MRF rotational domain as discussed by Gullberg et al. [24].
For different mesh structures with the realizable k − ε turbulence model, trimmed
mesh gives a smoother velocity profile at both fan sides. Further mesh refinements
are applied to k−ε model to check the possibility of obtaining more accurate results.
The refinements include

• decreasing minimum cell size to half of the value used in the original mesh,
• increasing mesh density by 20%,
• decreasing mesh growth rate by 20%.

Fig. 4.3 shows the axial velocity profile, 〈Ux〉, of the different mesh refinements
methods. It can be seen that there is no crucial difference between any of the
refinements and the original mesh. However, decreasing the minimum cell size does
improve the prediction of the axial velocity at the tip and the hub of the blade at the
pressure side of the fan. Nevertheless, comparing this improvement to the number of
extra cells (around 8 million) added for the mesh refinement, it is concluded that it
would be more computationally efficient to proceed with the original mesh structure
for further simulations.
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Figure 4.1: Axial mean velocity profile 〈Ux〉 for different turbulence models.
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Figure 4.2: Axial velocity profile 〈Ux〉 for different mesh structures.
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Figure 4.3: Axial velocity profile 〈Ux〉 for different mesh refinements.

4.2 Unsteady state simulation
The URANS results are extracted after passing 2 seconds of simulation time which
corresponds to 50 fan revolutions. The total export time of the results is around 0.7s
which is equivalent to 17 revolutions. Data are exported at each time step(∆t =
0.1ms). Time averaged pressure difference, axial velocity profile and wall pressure
fluctuations are presented in the next sections.

4.2.1 Pressure difference
The time averaged pressure difference values for the realizable k − ε model with
both polyhedral and trimmed mesh show a close estimation to the measurement
value with a deviation of 2.4% and 1.2% respectively, while the SST k − ω model
with polyhedral mesh gives a relatively poorer estimation with a deviation of 4.2%
as can be seen in Tab. 4.2.

4.2.2 Axial velocity
The time averaged axial velocity results for both turbulence models at the suction
side give a good overall axial velocity profile values against the measured ones with an
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Pressure difference (Pa)
Measurement 126.5

Realizable k − ε/Polyhedral mesh 123.4
Realizable k − ε/Trimmed mesh 128.06
SST k − ω/Polyhedral mesh 131.9

Table 4.2: Pressure difference for different unsteady simulation models.

overestimation after the middle part of the blade and a remarkable underestimation
at the tip region as shown in Fig. 4.4(a). For the pressure side, the realizable k − ε
model slightly underestimates the velocity value at the middle region of the blade
and gives a close prediction of the flow velocity at blade tip. The SST k − ω model
gives a poor velocity profile quality compared to the realizable k − ε model with a
similar behavior at the middle region of the blade, higher overestimation after the
middle part and a steep decrease in the velocity value at the hub region as can be
seen in Fig. 4.4(b). Furthermore, the study for different wall treatments in RANS
models in Appendix A shows that the realizable k−ε with all y+ treatment accuracy
is less sensitive than the SST k − ω with all y+ treatment at near-wall y+ values.
For different mesh types with realizable k − ε turbulence model, both polyhedral
and trimmed mesh give similar velocity profile predictions at the suction side (see
Fig. 4.5(a)); however, trimmed mesh gives completely far prediction of the velocity
profile at the pressure side as shown in Fig. 4.5(b). In general, The unsteady simu-
lation gave a better prediction to the velocity profile at the suction side but not for
the pressure side compared to the steady simulation.
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Figure 4.4: Time averaged axial velocity profile for different turbulence models.
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Figure 4.5: Time averaged axial velocity profile for different mesh structures.

4.2.3 Wall pressure fluctuations
After comparing velocity profiles at suction and pressure sides of the fan for different
simulation models, the realizable k−εmodel with polyhedral mesh is concluded to be
the most convenient model to use for further simulation investigations. Wall pressure
fluctuations are measured in the fan duct as described in Sec. 3.1.6. The power
spectral density (PSD) of wall pressure fluctuations are calculated using Matlab’s
function “pwelch” (The Mathworks, R2015a) with hanning window and 50% overlap
ratio. The PSD of the acoustic signal measured by the four different probes are
shown in Fig. 4.6 where probe 2 is located before the blades on the suction side.
Probe 7 & 8 are located in the same line with the blades and probe 14 is located
after the blades at the pressure side. Since URANS model is used, results focus
only on the narrow-band components of the fan noise and ignore the broad-band
components. The simulation succeeded to resolve the blade passing frequency at
225Hz with a slight overestimation at the probes locations except for probe 14. The
sub-harmonic peak at 335Hz is expected to be caused by the interaction of the gap
flow with the fan blades as described in [25], the simulation greatly overestimates
this sub-harmonic peak at the four probes locations.
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(b) Kulite probe 7.
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(c) Kulite probe 8.
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Figure 4.6: PSD of wall pressure probes at the fan duct.

4.3 CAA simulation
The acoustic signal is measured at the suction side of the fan as described in
Sec. 3.2.3. The sound pressure level of the simulation acoustic signal is calculated
in the frequency domain by Actran using iCFD tool. Signal processing properties
used are similar to the ones described for wall pressure fluctuations. Unfortunately,
due to the unavailability of measurement data, measurement results are scanned
electronically from Junger numerical study [6]. Fig. 4.7 shows The PSD of the
four microphones described in Fig. 3.11. Similar to wall pressure fluctuations, low
frequency results are only presented. The simulation successfully reproduce blade
passing frequency with an underestimation at the four microphone locations while
overestimates the sub-harmonic peak at 335Hz at all microphone locations except
for microphone 4, the PSD is highly underestimated. The acoustic signal behaviour
at microphone 4 is probably because of the simulation representation to the acous-
tic source as a dipole source as can be clearly seen in the Lighthill’s surface density
contour at 335Hz in Fig. 4.8. Acoustic simulation results at the first three micro-
phones show a good prediction of the PSD at the blade passing frequency compared
to the detached eddy simulations (DES) used by Junger [6] through OpenFOAM
and Fluent for the same benchmark case.
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(b) Microphone 2.
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(c) Microphone 3.
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Figure 4.7: PSD of the acoustic signal.

Figure 4.8: Lighthill surface density at 335Hz.
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5
Conclusion

The low-pressure axial fan benchmark case published in Zenger et al. [2] has been
reproduced numerically and the aerodynamic and the narrow-band acoustic results
have been compared with the measurement results.
The steady RANS CFD model has been first applied using MRF approach to cal-
culate the mean flow field and compare different simulation models and mesh struc-
tures. The pressure rise of the fan and the axial velocity profile at both sides of
the fan have shown good agreement with the measurement data provided by Zenger
et al. [2]. No major differences have been noticed for different mesh refinements
applied to the steady state simulation model. The calculated mean flow has later
been used by the URANS CFD model as initial conditions.
The URANS models have been applied using sliding mesh approach for fan modeling.
The realizable k-εURANS model with polyhedral mesh has provided good prediction
of the mean flow quantities. In addition, the unsteady wall pressure fluctuations
computed, have succeeded to resolve the fan blade passing frequency and the sub-
harmonic frequency resulted from the interaction of the gap flow with the fan blades.
The calculated unsteady flow field has later been used as a surface noise source
to analyze the aerodynamically generated noise through Lighthill’s analogy. The
narrow-band acoustic components of the fan noise have been successfully captured,
although the predicted power spectrum density has been severely underestimated
at several measurement points. Compared to other numerical simulation models
applied for the same benchmark case, the simulation model presented gave a good
prediction to the acoustic signal.
Overall, the presented approach has been shown to be able to provide promising
results in resolving the narrow-band noise spectrum. The next step is to extend the
approach to predict the broad-band components by employing more advanced CFD
models, such as the large eddy simulation.
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A
Appendix: Comparison among

different wall treatments in RANS
models

The purpose of this simple test1 is to demonstrate that, the accuracy of the “Two-
Layer all y+ wall treatment” k − ε model provided in STAR-CCM+ seems to be
less sensitive to the y+ value of the cell adjacent to the wall, compared to the other
RANS models available in the software.
The flow case being investigated is 2D fully developed channel flow with Reτ =
u∗H/ν=350, where u∗ is the friction velocity, and H is the channel half height.
Two mesh setups are compared. One with low y+ values (< 1) near the wall (see
Fig. A.1(a)), the other with medium y+ values (≈ 10) near the wall (see Fig. A.1(b)).
In both setups, prism layer is used in the boundary layer, while poly-mesh is used
away from the wall. The no-slip boundary condition is applied at y = 0 and the
symmetry condition is used at y = H. Inlet and outlet boundaries are coupled
through the “Fully-Developed Interface”.
The mean velocity profiles computed from four RANS models with different wall
treatments provided in STAR-CCM+ are compared. They are

1. Realizable k − ε, all y+ treatment.
2. Realizable k − ε, high y+ treatment.
3. SST k − ω, all y+ treatment.
4. SST k − ω, low y+ treatment.

The DNS data from [26, Figure 3] are used as the benchmark data. Based on the
comparison shown in Fig. A.2 we may draw the following conclusions.

• The SST k − ω model with either all or low y+ treatment is accurate only
when the low y+ mesh is employed; its accuracy is deteriorated when the first
mesh cell has y+ value much larger then unity (the SST k−ω model with low
y+ treatment does not even converge in the case of Fig. A.2(b)).

• The realizable k−ε with high y+ treatment works properly only for the medium
y+ mesh, but not for the case where the near-wall y+ value is less than unity.

• The accuracy of the realizable k − ε with all y+ wall treatment seems to be
less sensitive to the near-wall y+ values.

Since it is generally difficult to know a priori the near-wall y+values for the entire
computational domain, it is probably less risky to choose the realizable k− ε model
with all y+ treatment as the first attempt of the simulation.

1Being inspired by https://www.youtube.com/watch?v=mVE9OAB5Sao.
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(a) Low y+ mesh (b) Medium y+ mesh

Figure A.1: Two mesh setups used in the test case.
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Figure A.2: Dimensionless velocity u+ = u/u∗ over y+. Note that the SST k − ω
model with low y+ treatment is not converged in the case of Fig. A.2(b).
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B
Appendix: Blade

element/momentum method
(BEMM)

The BEMM can be used in the conceptual design of axial fans [27]. Compared to
CFD, the BEMM provides a quick (though less accurate) prediction of the perfor-
mance of a fan. The method is also very easy to understand and implement. To
assist the investigation of cooling-fans on future Volvo electric vehicles, the BEMM
is implemented using Python 3 [1]. This chapter summarizes the theory of BEMM
and the details of the implementation. The code is applied to the N1UG fan and
the results are compared with those given in [2]

B.1 Theory

chord line

V1

V0

V2

φ

θ

α

lift

drag

thrust

torque
radius

Figure B.1: Sketch of the velocity tri-
angle and force vector on a blade ele-
ment. Image source: [1], reproduced
with permission.

The BEMM is a combination of the blade
element method and the momentum the-
ory [27, 28]. Detailed formulation of the
BEMM can be easily found from the in-
ternet so it is not repeated here. What
is shown in this chapter is merely concise
summary of the BEMM.
The fundamental idea behind the BEMM
is to divide the fan blades into a number
of “blade elements” and perform dynamic
analysis locally for each element. The per-
formance of the fan is then evaluated by
integrating the local dynamic quantities
over all the blade elements.
In Fig. B.1 the airfoil profile of an individ-
ual blade element is illustrated. Our goal
here is to calculate the local thrust and torque from the velocity triangles. For blade
elements on an annular ring with radius r and width dr, it can be easily shown that
the thrust dT and torque dQ are respectively given by

dT = 1
2ρ0V

2
1 cNB (CL cosφ− CD sinφ) dr, (B.1a)
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and
dQ = 1

2ρ0V
2

1 cNB (CD cosφ+ CL sinφ) rdr. (B.1b)

where c is the chord length, NB is the number of blade, and CL and CD are the lift
and drag coefficient, respectively. The local inflow V1 should be determined from
the axial flow speed V0 and the angular flow speed V2 as

V1 =
√
V 2

0 + V 2
2 . (B.2)

If we assume that the velocity at the far-upstream (ambient condition) of the fan is
V∞, then, by taking into account the axial and swirl velocity induced by the fan, we
may write the local V0 and V2 as

V0 = V∞ (1 + a) , (B.3)

and
V2 = Ωr (1− b) , (B.4)

where a is the axial inflow factor, and b is the angular inflow factor, and Ω =
2π ·RPM/60 is the angular speed of the rotor. To further determine the factors, we
need the following relations derived from the momentum theory [29]

dT = 4πrρ0V
2
∞a (1 + a) dr, (B.5a)

and
dQ = 4πr3ρ0V∞Ωb (1 + a) dr. (B.5b)

By solving Eq. (B.1) and Eq. (B.5) with the two unknowns a and b, we may obtain
the total thrust on the fan as T =

∫ rtip
rhub

dT, which further gives the static pressure
rise of the fan (averaged over the area, A, of the fan blades) as ∆p = T/A. Due to
the assumption of inviscid fluid in the underlying momentum theory, the increase in
the total pressure is experienced as an increase in the static pressure ∆p at the fan.
Since CL and CD are generally1 function of the angle of attack α, given by

α = θ − φ = θ − arctan V0

V2
= θ − arctan V∞ (1 + a)

Ωr (1− b) , (B.6)

which is also a function of a and b, we may have to solve Eq. (B.1) and Eq. (B.5)
iteratively. The implementation of the iteration solver is given in the next section.

B.2 Implementation
The BEMM formulations given by Eq. (B.1) and Eq. (B.5) are solved iteratively
with an in-house program written in Python. Several root-finding algorithms are
provided as the solver, among which the fsolve function in the SciPy library [30]
is the most recommended. The lift and drag coefficients CL and CD are computed

1They are also function of the local Reynolds number in the current implementation because
the flow boundary layer at the airfoil is taken into account.
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with XFOIL [31], an analysis and design system for low Reynolds number airfoils.
The Python interface for XFOIL is built up via the open-source library AeroPy [32].
To accelerate the convergence of the fsolve function, the initial guesses for the
unknowns a and b are obtained via a fast bisection-like root-finding method where
the lift and drag coefficients are computed using the following symmetric-airfoil
approximations for small angle of attack [33]:

CL = 2πα and CD = 0.01C2
L − 0.003CL + 0.008. (B.7)

In spite of the above calculation of the initial guesses, convergence is not always
guaranteed while using XFOIL for a given fan geometry. One may need to manually
tune the parameters in fsolve to achieve the convergence with certain tolerance.

B.3 Application to N1UG fan
The N1UG fan investigated in [2] was designed with an improved blade element
theory proposed by Carolus and Starzmann [34]. Their results are compared with
the current implementation.
In the current investigation each fan blade is divided into 20 blade elements. The
NACA 4501 airfoil is used in XFOIL to compute the local lift and drag coefficients.
The computed results are summarized in Tab. B.1. As can be seen, although the
geometry-related quantities are somehow different in the two cases, the values of
the pressure rise, which is the quantity that interests us the most in fan design, are
almost the same.

Zenger et al. [2] Current implementation
RPM 1486 min−1

Volumetric flow 1.4 m3s−1

Chord length hub 103 mm 95.17558 mm
Chord length tip 58 mm 54.61657 mm

Reynolds number hub 1.25 · 105 1.38939 · 105

Reynolds number tip 1.5 · 105 1.63902 · 105

Pressure rise 150 Pa 147.10902 Pa

Table B.1: Comparison between the N1UG design parameters given in [2] and
those reversely computed with the current implementation of the BEMM [1]. The
chord lengths are different in the two cases mainly due to the choices of the blade
element sizes.
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